(may be broke/outdated!)
Unspillable.com is your gateway into to the intriguing world of energy mysteries, revolutionary fuels, and the science driving alternative energy solutions. Delve into the depths of covert agendas and unexplained phenomena surrounding energy sources while uncovering the latest advancements in renewable technologies. From debunking conspiracies to exploring the cutting edge of sustainable energy, we’re your go-to resource for unraveling the secrets shaping our energy landscape.
© 2024 All Rights Reserved
4 Responses
1
easy, a three blade catches more wind therefore generates more electricity than a two blade
Everything else being equal, a 2-blade prop is more efficient than a 3-blade. HOWEVER, seldom is everything else equal. On a fixed-pitch prop a 3-blade must be shorter than a 2-blade because of horsepower absorption. This makes the 3-blade quieter.
Modern wind turbine engineers avoid building large machines with an even number of rotor blades. The most important reason is the stability of the turbine. A rotor with an odd number of rotor blades (and at least three blades) can be considered to be similar to a disc when calculating the dynamic properties of the machine.
A rotor with an even number of blades will give stability problems for a machine with a stiff structure. The reason is that at the very moment when the uppermost blade bends backwards, because it gets the maximum power from the wind, the lowermost blade passes into the wind shade in front of the tower.
Two-bladed wind turbine designs have the advantage of saving the cost of one rotor blade and its weight, of course. However, they tend to have difficulty in penetrating the market, partly because they require higher rotational speed to yield the same energy output. This is a disadvantage both in regard to noise and visual intrusion. Lately, several traditional manufacturers of two-bladed machines have switched to three-bladed designs.